Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structural, electronic, and mechanical properties of Mg–Dy intermetallic phases studied by first-principles calculations

Mengqin He, Yuting Yang, Qian Ma, Yuquan Cheng, Mengting Zhou,Yunfei Ding

Smart Materials in Manufacturing(2024)

Cited 0|Views0
No score
Abstract
Rare earth elements such as Dy, Gd and Y have been utilized in the fabrication of binary Mg alloys due to their beneficial effects on the formation of oxidation layers on the surface and intermetallics in the Mg matrix. These effects have been shown to enhance the corrosion resistance and mechanical properties of the alloys. Therefore, the study of Mg–Dy intermetallic phases is regarded as significantly important. These phases are considered to hold great potential effects on the properties of Mg–Dy alloys for various applications, thereby making their investigation essential in the academic and scientific domains. In this study, the energy, density of states, optical properties and elastic properties of the Mg1Dy1, Mg2Dy, Mg3Dy, and Mg24Dy5 intermetallic phases were calculated using first principles calculations. Based on the calculated formation enthalpy (derived from the energy) and density of states, it is suggested that the Mg1Dy1 phase exhibits greater stability compared to the other three Mg–Dy intermetallic phases. The calculated formation enthalpy results indicate that all four Mg–Dy phases are stable, while the band structure and density of states plots show metallic characteristics for these phases. The optical properties of the intermetallic phases were investigated, and the static dielectric constants for Mg1Dy1, Mg2Dy, Mg3Dy, and Mg24Dy5 were calculated to be 266.47 eV, 285.80 eV, 257.75 eV, and 373.98 eV, respectively. In addition, concerning the study of absorption spectra, the maximum values of the absorption coefficients for all four intermetallic phases occur within the energy range of 40–65 eV for incident light. Born-Huang's mechanical stability theory was employed to calculate the elastic constants of each Mg–Dy phase, and the bulk modulus (B), shear modulus (G), Young's modulus (E), Poisson's ratio (υ), and theoretical hardness (HV) were derived. The results of the elastic modulus calculations indicate that the B, G, E, υ, HV of the Mg1Dy1 phase are higher than those of the other Mg–Dy intermetallic phases. The Poisson's ratio (υ) and the ratio of bulk modulus to shear modulus (B/G) indicate that the Mg24Dy5 phase is ductile, while the other three phases are brittle. Finally, the universal anisotropy (AU) is ranked as Mg3Dy > Mg1Dy1 > Mg24Dy5 > Mg2Dy, with the Mg3Dy phase exhibiting the most pronounced elastic anisotropy.
More
Translated text
Key words
Mg-Dy intermetallic phases,First principles calculations,Mechanical properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined