谷歌浏览器插件
订阅小程序
在清言上使用

Knowledge-embedded constrained multiobjective evolutionary algorithm based on structural network control principles for personalized drug targets recognition in cancer

Information Sciences(2024)

引用 0|浏览0
暂无评分
摘要
The structural network control principle for identifying personalized drug targets (SNCPDTs) is a kind of constrained multiobjective optimization (CMO) problem with NP-hard features, which makes traditional mathematical methods difficult to adopt. Therefore, this study designs a knowledge-embedded multitasking constrained multiobjective evolutionary algorithm (KMCEA) to solve the SNCPDTs by mining relevant knowledge. Specifically, the relationships between two optimization objectives (minimizing the number of driver nodes and maximizing prior-known drug-target information) and constraints (guaranteeing network control) are analyzed from the perspective of CMO. We find that two objectives are difficult to optimize; thus two single-objective auxiliary tasks are created to optimize two objectives respectively, so as to maintain diversity along the Pareto front. Furthermore, we find that two optimization objectives have a complex reverse relation and a simple positive relation with constraints, respectively; thus, a population initialization method and a local auxiliary task are designed for two single-objective auxiliary tasks, respectively, so as to improve the performance of the algorithm on two objective functions. Finally, KMCEA is used to solve two kinds of models with three kinds of datasets. Compared with various methods, KMCEA can not only effectively discover clinical combinatorial drugs but also better solve the SNCPDTs regarding convergence and diversity.
更多
查看译文
关键词
Structural network control principles,Personalized drug targets with cancer,Evolutionary algorithm,Constrained multiobjective optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要