Compliant Solid Polymer Electrolytes (SPEs) for Enhanced Anode-Electrolyte Interfacial Stability in All-Solid-State Lithium-Metal Batteries (LMBs).

ACS applied polymer materials(2024)

Cited 0|Views0
No score
Abstract
Practical application of high energy density lithium-metal batteries (LMBs) has remained elusive over the last several decades due to their unstable and dendritic electrodeposition behavior. Solid polymer electrolytes (SPEs) with sufficient elastic modulus have been shown to attenuate dendrite growth and extend cycle life. Among different polymer architectures, network SPEs have demonstrated promising overall performance in cells using lithium metal anodes. However, fine-tuning network structures to attain adequate lithium electrode interfacial contact and stable electrodeposition behavior at extended cycling remains a challenge. In this work, we designed a series of comb-chain cross-linker-based network SPEs with tunable compliance by introducing free dangling chains into the SPE network. These dangling chains were used to tune the SPE ionic conductivity, ductility, and compliance. Our results demonstrate that increasing network compliance and ductility improves anode-electrolyte interfacial adhesion and reduces voltage hysteresis. SPEs with 56.3 wt % free dangling chain content showed a high Coulombic efficiency of 93.4% and a symmetric cell cycle life 1.9× that of SPEs without free chains. Additionally, the improved anode compliance of these SPEs led to reduced anode-electrolyte interfacial resistance growth and greater capacity retention at 92.8% when cycled at 1C in Li|SPE|LiFePO4 half cells for 275 cycles.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined