Hexagonal boron nitride nanosheets/graphene nanoplatelets/cellulose nanofibers-based multifunctional thermal interface materials enabling electromagnetic interference shielding and electrical insulation

Jaeyoung Yun,Jaemin Lee, Jiheon Kim,Jeongwoo Lee,Wonjoon Choi

Carbon(2024)

引用 0|浏览0
暂无评分
摘要
Thermal interface materials (TIMs) that block electromagnetic interference (EMI) and current leakage are essential for high-density, high-power devices and compact form factors of electronic and mobility platforms. However, their coupled thermal-electrical-electromagnetic characteristics involve mismatches in thermal conductivity, electrical insulation, and EMI shielding, limiting the multifunctionality. Herein, a sandwich-like structural design that rationally combines graphene nanoplatelets (GNPs), hexagonal boron nitride nanosheets (BNNSs) and cellulose nanofibers (CNFs) is presented toward multifunctional trilayer TIMs enabling high thermal conductivity, EMI shielding, electrical insulation, mechanical compatibility and flame retardancy. The top and bottom BNNSs serve as electrically insulating yet thermally conductive layers while the GNPs in the central layer mitigate EMI and the CNFs as a binder complete the mechanical properties for the lamella-like trilayers. The resulting TIM exhibits a high in-plane thermal conductivity (25.5 W/m·K), and the LED cooling system using the TIM demonstrates the capability of reducing the operating temperature. Furthermore, it shows a high-volume resistivity (4.12 × 1013 Ω cm) and EMI shielding effectiveness (29.0 dB) at X-band frequencies. Its mechanical robustness is confirmed with tensile strength and elongation of 65.0 MPa and 2.36 %, and the high flame retardancy is validated. The outcomes will inspire tailoring multifunctional TIMs using lamellar structures that optimally combine micro/nanomaterials.
更多
查看译文
关键词
Thermal interface materials,Graphene nanoplatelets,Hexagonal boron nitride,Cellulose nanofibers,Electromagnetic interference shielding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要