Modeling cancer-associated hypercoagulability using glioblastoma spheroids in microfluidic chips

Maaike Y. Kapteijn, Monika Yanovska,El Houari Laghmani, Rudmer J. Postma, Vincent van Duinen,Betül Ünlü,Karla Queiroz, Anton Jan van Zonneveld, Henri H. Versteeg,Araci M.R. Rondon

Research and Practice in Thrombosis and Haemostasis(2024)

引用 0|浏览0
暂无评分
摘要
Background Cancer increases the risk of venous thromboembolism, and glioblastoma is one of the cancer types with the highest risk of venous thromboembolism (10%-30%). Tumor-intrinsic features are believed to affect vascular permeability and hypercoagulability, but novel models are required to study the pathophysiological dynamics underlying cancer-associated thrombosis at the molecular level. Objectives We have developed a novel cancer-on-a-chip model to examine the effects of glioblastoma cells on the deregulation of blood coagulation. Methods This was accomplished by coculturing vessel-forming human umbilical vein endothelial cells with glioblastoma spheroids overexpressing tissue factor (TF), the initiator of coagulation (U251 lentivirus, LV-TF) or an LV-control (U251 LV-Ctrl) in an OrganoPlate Graft platform. Results Using a modified thrombin generation assay inside the cancer-on-a-chip, we found that U251 LV-Ctrl and U251 LV-TF spheroids promoted an increased procoagulant state in plasma, as was shown by a 3.1- and 7.0-fold increase in endogenous thrombin potential, respectively. Furthermore, the anticoagulant drug rivaroxaban and TF coagulation-blocking antibody 5G9 inhibited the activation of blood coagulation in U251 LV-TF spheroid-containing graft plates, as was shown by a reduced endogenous thrombin potential (4.0- and 4.4-fold, respectively). Conclusion With this study, we present a novel 3-dimensional cancer-on-a-chip model that has the potential to be used in the discovery of new anticoagulant drugs and identification of optimal anticoagulant strategies for glioblastoma and other cancer types.
更多
查看译文
关键词
anticoagulants,cancer-associated thrombosis,extracellular vesicles,glioblastoma,organ-on-a-chip
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要