Caloric restriction leading to attenuation of experimental Alzheimer's disease results from alterations in gut microbiome.

Junyu Chen,Cong Zou, Hongbing Guan,Xiaoming Zhou, Le Hou, Yayong Cui, Junhua Xu,Ping Luan, Dong Zheng

CNS neuroscience & therapeutics(2024)

引用 0|浏览0
暂无评分
摘要
BACKGROUND:Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS:Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS:We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aβ40, Aβ42, IL-1β, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS:Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要