Grain boundaries control lithiation of solid solution substrates in lithium metal batteries

arxiv(2024)

Cited 0|Views6
No score
Abstract
The development of sustainable transportation and communication systems requires an increase in both energy density and capacity retention of Li-batteries. Using substrates forming a solid solution with body centered cubic Li enhances the cycle stability of anode-less batteries. However, it remains unclear how the substrate microstructure affects the lithiation behavior. Here, we deploy a correlative, near-atomic scale probing approach through combined ion- and electron-microscopy to examine the distribution of Li in Li-Ag diffusion couples as model system. We reveal that Li regions with over 93.8 grain interiors are not lithiated. We evidence the role of kinetics and mechanical constraint from the microstructure over equilibrium thermodynamics in dictating the lithiation process. The findings suggest that grain size and grain boundary character are critical to enhance the electrochemical performance of interlayers/electrodes, particularly for improving lithiation kinetics and hence reducing dendrite formation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined