Chrome Extension
WeChat Mini Program
Use on ChatGLM

Pb(II) Adsorption Properties of a Three-Dimensional Porous Bacterial Cellulose/Graphene Oxide Composite Hydrogel Subjected to Ultrasonic Treatment

Materials(2024)

Cited 0|Views9
No score
Abstract
A three-dimensional porous bacterial cellulose/graphene oxide (BC/GO) composite hydrogel (BC/GO) was synthesized with multi-layer graphene oxide (GO) as the modifier and bacterial cellulose as the skeleton via an ultrasonic shaking process to absorb lead ions effectively. The characteristics of BC/GO were investigated through TEM, SEM, FT-IR, NMR and Zeta potential experiments. Compared to bacterial cellulose, the ultrasonic method and the carboxyl groups stemming from GO helped to enhance the availability of O(3)H of BC, in addition to the looser three-dimensional structure and enriched oxygen-containing groups, leading to a significantly higher adsorption capacity for Pb(II). In this paper, the adsorption behavior of BC/GO is influenced by the GO concentration, adsorption time, and initial concentration. The highest adsorption capacity for Pb(II) on BC/GO found in this study was 224.5 mg/g. The findings implied that the pseudo-second-order model explained the BC/GO adsorption dynamics and that the data of its adsorption isotherm fit the Freundlich model. Because of the looser three-dimensional structure, the complexation of carboxyl groups, and the enhanced availability of O(3)H, bacterial cellulose exhibited a much better adsorption capacity.
More
Translated text
Key words
bacterial cellulose,graphene oxide,ultrasonic method,adsorption,Pb(II)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined