Chrome Extension
WeChat Mini Program
Use on ChatGLM

Role of Emerin in regulating fibroblast differentiation and migration at the substrate of stiffness coupled topology.

Tiantian Yang,Li Wang,Haiyang Ma, Kailun Li, Yajing Wang, Wenjie Tang, Zichen Wang,Meiwen An, Xiang Gao, Ludan Xu, Yunyun Guo,Jiqiang Guo, Yong Liu, Hugen Wang,Yang Liu,Quanyou Zhang

Acta biochimica et biophysica Sinica(2024)

Cited 0|Views2
No score
Abstract
In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined