Chrome Extension
WeChat Mini Program
Use on ChatGLM

Continuous-variable Quantum Digital Signatures Against Coherent Attacks

arxiv(2024)

Cited 0|Views5
No score
Abstract
Quantum digital signatures (QDS), which utilize correlated bit strings among sender and recipients, guarantee the authenticity, integrity and non-repudiation of classical messages based on quantum laws. Continuous-variable (CV) quantum protocol with heterodyne and homodyne measurement has obvious advantages of low-cost implementation and easy wavelength division multiplexing. However, security analyses in previous researches are limited to the proof against collective attacks in finite-size scenarios. Moreover, existing multi-bit CV QDS schemes have primarily focused on adapting single-bit protocols for simplicity of security proof, often sacrificing signature efficiency. Here, we introduce a CV QDS protocol designed to withstand general coherent attacks through the use of a cutting-edge fidelity test function, while achieving high signature efficiency by employing a refined one-time universal hashing signing technique. Our protocol is proved to be robust against finite-size effects and excess noise in quantum channels. In simulation, results demonstrate a significant reduction of over 6 orders of magnitude in signature length for a megabit message signing task compared to existing CV QDS protocols and this advantage expands as the message size grows. Our work offers a solution with enhanced security and efficiency, paving the way for large-scale deployment of CV QDS in future quantum networks.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined