Reverse vaccinology approach for identification of epitopes from E1 protein as peptide vaccine against HCV: A proof of concept.

Vaccine(2024)

Cited 0|Views0
No score
Abstract
The development of effective vaccines against Hepatitis C Virus (HCV) remains a global health priority and challenge. In this study, we employed an integrative approach combining computational epitope prediction with experimental validation to identify immunogenic peptides targeting the E1 glycoprotein of HCV. In the present report, computational data from various epitope prediction algorithms such as IEDB and SYFPEITHI, followed by molecular dynamics (MD) simulations and immuno-informatics analysis is presented. Through computational screening, we identified potential epitope candidates, with QVRNSSGLY (P3) and QLFTFSPRH (P7) emerging as promising candidates. MD simulations revealed stable interactions between these epitopes and MHC molecule, further validated by free energy estimations using MMPBSA method. Immuno-informatics analysis supported these findings, showing high binding potential and immunogenicity scores for the selected peptides. Subsequent synthesis and characterization of epitope peptides confirmed their structural integrity and purity required for conducting immune activation assays. Experimental immunological assays carried out in this study involved epitope peptide induced activation of CD8 + and CD4 + T cells from healthy human subjects and HCV- recovered patients. Data from experimental validation revealed significant cytokine release upon exposure to epitope peptides, particularly TNF-a, IL-6, and GM-CSF, indicative of robust immune responses. Notably, peptides P3 and P7 exhibited the most pronounced cytokine induction profiles, underscoring their potential as vaccine candidates. Further investigations addressing the mechanism of action of these epitope peptides under preclinical and clinical settings may help in developing effective vaccine against HCV.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined