Design and Development of Metasurface Materials for Enhancing Photodetector Properties.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2024)

Cited 0|Views0
No score
Abstract
Recently, metasurface-based photodetectors (metaphotodetectors) have been developed and applied in various fields. Metasurfaces are artificial materials with unique properties that have emerged over the past decade, and photodetectors are powerful tools used to quantify incident electromagnetic wave information by measuring changes in the conductivity of irradiated materials. Through an efficient microstructural design, metasurfaces can effectively regulate numerous characteristics of electromagnetic waves and have demonstrated unique advantages in various fields, including holographic projection, stealth, biological image enhancement, biological sensing, and energy absorption applications. Photodetectors play a crucial role in military and civilian applications; therefore, efficient photodetectors are essential for optical communications, imaging technology, and spectral analysis. Metaphotodetectors have considerably improved sensitivity and noise-equivalent power and miniaturization over conventional photodetectors. This review summarizes the advantages of metaphotodetectors based on five aspects. Furthermore, the applications of metaphotodetectors in various fields including military and civil applications, are systematically discussed. It highlights the potential future applications and developmental trends of metasurfaces in metaphotodetectors, provides systematic guidance for their development, and establishes metasurfaces as a promising technology.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined