Simplified design of nonlinear damper parameters and seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers

Frontiers of Structural and Civil Engineering(2024)

Cited 0|Views0
No score
Abstract
Viscous dampers are widely used as passive energy dissipation devices for long-span cable-stayed bridges for mitigation of seismic load-induced vibrations. However, complicated finite element (FE) modeling, together with repetitive and computationally intensive nonlinear time-history analyses (NTHAs) are generally required in conventional design methods. To streamline the preliminary design process, this paper developed a simplified longitudinal double degree of freedom model (DDFM) for single and symmetric twin-tower cable-stayed bridges. Based on the proposed simplified longitudinal DDFM, the analytical equations for the relevant mass- and stiffness-related parameters and longitudinal natural frequencies of the structure were derived by using analytical and energy methods. Modeling of the relationship between the nonlinear viscous damper parameters and the equivalent damping ratio was achieved through the equivalent linearization method. Additionally, the analytical equations of longitudinal seismic responses for long-span cable-stayed bridges with nonlinear viscous dampers were derived. Based on the developed simplified DDFM and suggested analytical equations, this paper proposed a simplified calculation framework to achieve a simplified design method of nonlinear viscous damper parameters. Moreover, the effectiveness and applicability of the developed simplified longitudinal DDFM and the proposed calculation framework were further validated through numerical analysis of a practical cable-stayed bridge. Finally, the results indicated the following. 1) For the obtained fundamental period and longitudinal stiffness, the differences between results of the simplified longitudinal DDFM and numerical analysis were only 2.05
More
Translated text
Key words
cable-stayed bridges,viscous dampers,simplified analytical model,equivalent damping ratio,seismic mitigation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined