谷歌浏览器插件
订阅小程序
在清言上使用

A Propulsion Neuroprosthesis Improves Overground Walking in Community-Dwelling Individuals after Stroke

Dabin K. Choe, Ashlyn J. Aiello, Johanna E. Spangler, Conor J. Walsh, Louis N. Awad

IEEE Open Journal of Engineering in Medicine and Biology(2024)

引用 0|浏览4
暂无评分
摘要
Functional electrical stimulation (FES) is a common neuromotor intervention whereby electrically evoked dorsiflexor muscle contractions assist foot clearance during walking. Plantarflexor neurostimulation has recently emerged to assist and retrain gait propulsion; however, safe and effective coordination of dorsiflexor and plantarflexor neurostimulation during overground walking has been elusive, restricting propulsion FES to harnessed treadmill walking. We present an overground FES neuroprosthesis that adaptively coordinates, on a step-by-step basis, neurostimulation to the dorsiflexors and plantarflexors. In 10 individuals post-stroke, we evaluate the immediate effects of plantarflexor neurostimulation delivered with different onset timings, and retention to unassisted walking (NCT06459401). Preferred onset timing differed across individuals. Individualized tuning resulted in a significant 10% increase in paretic propulsion peak (Δ: 1.41±1.52 %BW) and an 8% increase in paretic plantarflexor power (Δ: 0.27±0.23 W/kg), compared to unassisted walking. Post-session unassisted walking speed, paretic propulsion peak, and propulsion symmetry all significantly improved by 9% (0.14±0.09 m/s), 28% (2.24±3.00 %BW), and 12% (4.5±6.0 %), respectively, compared to pre-session measurements. Here we show that propulsion-based tuning of an overground propulsion neuroprosthesis can improve overground walking speed and symmetry in the chronic phase of stroke. Future studies should include a control group to examine the efficacy of gait training augmented by the propulsion neuroprosthesis compared to gait training alone.
更多
查看译文
关键词
Neuroprosthesis,Functional Electrical Stimulation,Propulsion,Chronic Stroke,Overground Walking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要