Neural Network-Based Filter Design for Compressive Raman Classification of Cells.

Journal of chemical information and modeling(2024)

Cited 0|Views0
No score
Abstract
Cell-based therapies are bound to revolutionize medicine, but significant technical hurdles must be overcome before wider adoption. In particular, nondestructive, label-free methods to characterize cells in real time are needed to optimize the production process and improve quality control. Raman spectroscopy, which provides a fingerprint of a cell's chemical composition, would be an ideal modality but is too slow for high-throughput applications. Compressive Raman techniques, which measure only linear combinations of Raman intensities, can be fast but require careful optimization to deliver high performance. Here, we develop a neural network model to identify optimal parameters for a compressive sensing scheme that reduces measurement time by 2 orders of magnitude. In a data set containing Raman spectra of three different cell types, it achieves up to 90% classification accuracy using only five linear combinations of Raman intensities. Our method thus unlocks the power of Raman spectroscopy for the characterization of cell products.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined