谷歌浏览器插件
订阅小程序
在清言上使用

X-Shooting ULLYSES: Massive Stars at Low Metallicity – IV. Spectral Analysis Methods and Exemplary Results for O Stars

arxiv(2024)

引用 0|浏览10
暂无评分
摘要
CONTEXT: The spectral analysis of hot, massive stars is a fundamental astrophysical method to obtain their intrinsic properties and their feedback. Quantitative spectroscopy for hot, massive stars requires detailed numerical modeling of the atmosphere and an iterative treatment to obtain the best solution within a given framework. AIMS: We present an overview of different techniques for the quantitative spectroscopy of hot stars employed within the X-Shooting ULLYSES collaboration, from grid-based approaches to tailored fits. By performing a blind test, we gain an overview about the similarities and differences of the resulting parameters. Our study aims to provide an overview of the parameter spread caused by different approaches. METHODS: For three different stars from the sample (SMC O5 star AzV 377, LMC O7 star Sk -69 50, and LMC O9 star Sk -66 171), we employ different atmosphere codes (CMFGEN, Fastwind, PoWR) and strategies to determine their best-fitting model. For our analyses, UV and optical spectra are used to derive the properties with some methods relying purely on optical data for comparison. To determine the overall spectral energy distribution, we further employ additional photometry from the literature. RESULTS: Effective temperatures for each of three sample stars agree within 3 kK while the differences in log g can be up to 0.2 dex. Luminosity differences of up to 0.1 dex result from different reddening assumptions, which seem to be larger for the methods employing a genetic algorithm. All sample stars are nitrogen-enriched. CONCLUSIONS: We find a reasonable agreement between the different methods. Tailored fitting tends to be able to minimize discrepancies obtained with more course or automatized treatments. UV spectral data is essential for the determination of realistic wind parameters. For one target (Sk -69 50), we find clear indications of an evolved status.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要