Chrome Extension
WeChat Mini Program
Use on ChatGLM

Photosynthetic performance of glumes of oat spikelets is more stable for grain-filling stage under drought stress

Hanguo Zeng, Kun Yi,Shuangfeng Yang,Yiwei Jiang,Peisheng Mao, Yang Yu, Yuan Feng, Yongxiang Dong,Liru Dou,Manli Li

Plant Physiology and Biochemistry(2024)

Cited 0|Views1
No score
Abstract
Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.
More
Translated text
Key words
Oat,Spikelet glume,Non-foliar photosynthesis,Drought stress,Grain-filling stage
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined