Unsafe Events Detection in Smart Water Meter Infrastructure via Noise-Resilient Learning.

International Conference on Cyber-Physical Systems(2024)

Cited 0|Views0
No score
Abstract
Residential smart water meters (SWMs) collect real-time water consumption data, enabling automated billing and peak period forecasting. The presence of unsafe events is typically detected via deviations from the benign profile of water usage. However, profiling the benign behavior is non-trivial for large-scale SWM networks because once deployed, the collected data already contain those events, biasing the benign profile. To address this challenge, we propose a real-time data-driven unsafe event detection framework for city-scale SWM networks that automatically learns the profile of benign behavior of water usage. Specifically, we first propose an optimal clustering of SWMs based on the recognition of residential similarity water usage to divide the SWM network infrastructure into clusters. Then we propose a mathematical invariant based on the absolute difference between two generalized means – one with positive and the other with negative order. Next, we propose a robust threshold learning approach utilizing a modified Hampel loss function that learns the robust detection thresholds even in the presence of unsafe events. Finally, we validated our proposed framework using a dataset of 1,099 SWMs over 2.5 years. Results show that our model detects unsafe events in the test set, even while learning from the training data with unlabeled unsafe events.
More
Translated text
Key words
Resilient Machine Learning,Anomaly Detection,Smart Water Distribution,Smart Living CPS
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined