Neutrino oscillations originate from virtual excitation of Z bosons

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
To account for neutrino oscillations, it is postulated that the neutrino has nonvanishing mass and each flavor eigenstate is formed by three distinct mass eigenstates, whose probability amplitudes interfere with each other during its propagation. However, I find that the energy conservation law requires these mass eigenstates, if they exist, to be entangled with distinct joint energy eigenstates of the other particles produced by the same weak interaction as the neutrino. This entanglement destroys the quantum coherence among the neutrino's mass eigenstates, which are responsible for flavor oscillations under the aforementioned postulation. I reveal that the neutrino oscillations actually originate from virtual excitation of the Z bosonic field diffusing over the space. During the propagation, the neutrino can continually excite and then immediately re-absorb a virtual Z boson. This virtual bosonic excitation produces a backaction on the neutrino, enabling it to oscillate among three flavors. When the neutrino propagates in matter, its behavior is determined by the competition between the coherent flavor transformation and decoherence effect resulting from scatterings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要