A novel temporal-frequency combination pattern optimization approach based on information fusion for motor imagery BCIs.

Chenyang Lü,Ting Wang,Xugang Xi, Maofeng Wang,Jian Wang, Anton Zhilenko,Lihua Li

Computer methods in biomechanics and biomedical engineering(2024)

引用 0|浏览0
暂无评分
摘要
Motor imagery (MI) stands as a powerful paradigm within Brain-Computer Interface (BCI) research due to its ability to induce changes in brain rhythms detectable through common spatial patterns (CSP). However, the raw feature sets captured often contain redundant and invalid information, potentially hindering CSP performance. Methodology-wise, we propose the Information Fusion for Optimizing Temporal-Frequency Combination Pattern (IFTFCP) algorithm to enhance raw feature optimization. Initially, preprocessed data undergoes simultaneous processing in both time and frequency domains via sliding overlapping time windows and filter banks. Subsequently, we introduce the Pearson-Fisher combinational method along with Discriminant Correlation Analysis (DCA) for joint feature selection and fusion. These steps aim to refine raw electroencephalogram (EEG) features. For precise classification of binary MI problems, an Radial Basis Function (RBF)-kernel Support Vector Machine classifier is trained. To validate the efficacy of IFTFCP and evaluate it against other techniques, we conducted experimental investigations using two EEG datasets. Results indicate a notably superior classification performance, boasting an average accuracy of 78.14% and 85.98% on dataset 1 and dataset 2, which is better than other methods outlined in this article. The study's findings suggest potential benefits for the advancement of MI-based BCI strategies, particularly in the domain of feature fusion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要