Unveiling the barriers of Cd translocation from soil to rice: Insights from continuous flooding

Science of The Total Environment(2024)

引用 0|浏览5
暂无评分
摘要
Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 μg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron‑manganese plaque (IP) within 20–110 μm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %–25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.
更多
查看译文
关键词
Rice rhizosphere,iron‑manganese plaque,Cd contamination,Profile samplings,Chemical imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要