Alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients

World Journal of Surgical Oncology(2024)

引用 0|浏览0
暂无评分
摘要
The alteration of the immune microenvironment in the axillary metastatic lymph nodes of luminal A breast cancer patients is still unclear. Postsurgical tissues from the enrolled luminal A BCs were divided into five categories: primary BC lesion at stage N0 (PL1), primary BC lesion at stage N1 (PL2), negative axillary lymph node at stage N0 BC (LN1), negative axillary lymph node at stage N1 BC (LN2), and positive axillary lymph node at stage N1 BC (LN3). The frequencies of positive immune markers (CD4, CD8, PD1, PD-L1, T-cell immunoglobulin and mucin domain 3 (TIM3), and forkhead box protein 3 (Foxp3)) in the above tissues were quantified by AKOYA Opal Polaris 7 Color Manual IHC Detection Kit. A total of 50 female patients with luminal A BC were enrolled in this study. Among these patients, 23 had stage N1 disease, and 27 had stage N0 disease. Compared with that in the PL2 subgroup, the frequency of PD-1-positive cells was significantly greater in the PL1 subgroup, whether at the stromal or intratumoral level (P value < 0.05). Both the frequency of CD8 + T cells in LN1 and that in LN2 were significantly greater than that in LN3 (P value < 0.05). The frequency of TIM3 + T cells in LN1 was significantly greater than that in PL1 (P value < 0.05). The frequency of CD8 + TIM3 + T cells was significantly greater in both the LN2 and LN3 groups than in the PL2 group (P value < 0.05). The frequency of CD4 + Foxp3 + T cells was significantly greater in LN1 than in PL1 (P value < 0.05), which was the same for both LN3 and PL2 (P value < 0.05). Increased frequencies of CD8 + PD1+, CD8 + TIM3 + and CD4 + Foxp3 + T cells might inhibit the immune microenvironment of axillary metastatic lymph nodes in luminal A breast cancer patients and subsequently promote lymph node metastasis.
更多
查看译文
关键词
Breast cancer,Luminal A,Immune function,Alteration,Positive rate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要