Uracil-selective Cross-linking in RNA and Inhibition of miRNA Function by 2-Amino-6-vinyl-7-deazapurine Deoxynucleosides.

Fumi Nagatsugi, Nadya Soemawisastra,Hidenori Okamura,Ahmed Mostafa Abdelhady,Kazumitsu Onizuka, Mamiko Ozawa

Chembiochem : a European journal of chemical biology(2024)

引用 0|浏览0
暂无评分
摘要
MicroRNAs (miRNAs) regulate gene expression through RNA interference. Consequently, miRNA inhibitors, such as anti-miRNA oligonucleotides (AMOs), have attracted attention for treating miRNA overexpression. To achieve efficient inhibition, we developed 2-amino-6-vinylpurine (AVP) nucleosides that form covalent bonds with uridine counterparts in RNA. We demonstrated that mRNA cross-linked with AVP-conjugated antisense oligonucleotides with AVP were protected from gene silencing by exogenous miRNA. However, endogenous miRNA function could not be inhibited in cells, probably because of slow cross-linking kinetics. We recently developed ADpVP, an AVP derivative bearing a 7-propynyl group-which boasts faster reaction rate than the original AVP. Here, we synthesized dADpVP-a deoxy analog of ADpVP-through a simplified synthesis protocol. Evaluation of the cross-linking reaction revealed that the reaction kinetics of dADpVP were comparable to those of ADpVP. In addition, structural analysis of the cross-linked adduct discovered N3 linkage against uridine. Incorporating dADpVP into two types of miRNA inhibitors revealed a marginal impact on AMO efficacy yet improved the performance of target site blockers. These results indicate the potential of cross-linking nucleosides for indirect miRNA function inhibition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要