Towards biologically plausible model-based reinforcement learning in recurrent spiking networks by dreaming new experiences.

Scientific reports(2024)

引用 0|浏览2
暂无评分
摘要
Humans and animals can learn new skills after practicing for a few hours, while current reinforcement learning algorithms require a large amount of data to achieve good performances. Recent model-based approaches show promising results by reducing the number of necessary interactions with the environment to learn a desirable policy. However, these methods require biological implausible ingredients, such as the detailed storage of older experiences, and long periods of offline learning. The optimal way to learn and exploit world-models is still an open question. Taking inspiration from biology, we suggest that dreaming might be an efficient expedient to use an inner model. We propose a two-module (agent and model) spiking neural network in which "dreaming" (living new experiences in a model-based simulated environment) significantly boosts learning. Importantly, our model does not require the detailed storage of experiences, and learns online the world-model and the policy. Moreover, we stress that our network is composed of spiking neurons, further increasing the biological plausibility and implementability in neuromorphic hardware.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要