谷歌浏览器插件
订阅小程序
在清言上使用

Prediction of Motor and Non-Motor Parkinson's Disease Symptoms Using Serum Lipidomics and Machine Learning: a 2-Year Study.

npj Parkinson's Disease(2024)

引用 0|浏览7
暂无评分
摘要
Identifying biological factors which contribute to the clinical progression of heterogeneous motor and non-motor phenotypes in Parkinson's disease may help to better understand the disease process. Several lipid-related genetic risk factors for Parkinson's disease have been identified, and the serum lipid signature of Parkinson's disease patients is significantly distinguishable from controls. However, the extent to which lipid profiles are associated with clinical outcomes remains unclear. Untargeted high-performance liquid chromatography-tandem mass spectrometry identified >900 serum lipids in Parkinson's disease subjects at baseline (n = 122), and the potential for machine learning models using these lipids to predict motor and non-motor clinical scores after 2 years (n = 67) was assessed. Machine learning models performed best when baseline serum lipids were used to predict the 2-year future Unified Parkinson's disease rating scale part three (UPDRS III) and Geriatric Depression Scale scores (both normalised root mean square error = 0.7). Feature analysis of machine learning models indicated that species of lysophosphatidylethanolamine, phosphatidylcholine, platelet-activating factor, sphingomyelin, diacylglycerol and triacylglycerol were top predictors of both motor and non-motor scores. Serum lipids were overall more important predictors of clinical outcomes than subject sex, age and mutation status of the Parkinson's disease risk gene LRRK2. Furthermore, lipids were found to better predict clinical scales than a panel of 27 serum cytokines previously measured in this cohort (The Michael J. Fox Foundation LRRK2 Clinical Cohort Consortium). These results suggest that lipid changes may be associated with clinical phenotypes in Parkinson's disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要