Chrome Extension
WeChat Mini Program
Use on ChatGLM

Identification of Oil-Loving Cupriavidus necator BM3-1 for Polyhydroxyalkanoate Production and Assessing Contribution of Exopolysaccharide for Vegetable Oil Utilization.

Polymers(2024)

Cited 0|Views2
No score
Abstract
Polyhydroxyalkanoates (PHA) have received attention owing to their biodegradability and biocompatibility, with studies exploring PHA-producing bacterial strains. As vegetable oil provides carbon and monomer precursors for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)), oil-utilizing strains may facilitate PHA production. Herein, Cupriavidus necator BM3-1, which produces 11.1 g/L of PHB with 5% vegetable oil, was selected among various novel Cupriavidus necator strains. This strain exhibited higher preference for vegetable oils over sugars, with soybean oil and tryptone determined to be optimal sources for PHA production. BM3-1 produced 33.9 g/L of exopolysaccharides (EPS), which was three-fold higher than the amount produced by H16 (10.1 g/L). EPS exhibited 59.7% of emulsification activity (EI24), higher than that of SDS and of EPS from H16 with soybean oil. To evaluate P(3HB-co-3HHx) production from soybean oil, BM3-1 was engineered with P(3HB-co-3HHx) biosynthetic genes (phaCRa, phaARe, and phaJPa). BM3-1/pPhaCJ produced 3.5 mol% of 3HHx and 37.1 g/L PHA. BM3-1/pCB81 (phaCAJ) produced 32.8 g/L PHA, including 5.9 mol% 3HHx. Physical and thermal analyses revealed that P(3HB-co-5.9 mol% 3HHx) was better than PHB. Collectively, we identified a novel strain with high vegetable oil utilization capacity for the production of EPS, with the option to engineer the strain for P(3HB-co-3HHx).
More
Translated text
Key words
<i>Cupriavidus necator</i> BM3-1,oil,EPS,polyhydroxyalkanoates,P(3HB-<i>co</i>-3HHx)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined