Engineering Oxide Epitaxy beyond Substrate Constraint.

Nano letters(2024)

Cited 0|Views6
No score
Abstract
Orientation engineering is a crucial aspect of thin film growth, and it is rather challenging to engineer film epitaxy beyond the substrate constraint. Guided by density functional theory calculations, we use SrRuO3 (SRO) as a buffer layer and successfully deposit [111]-oriented CoFe2O4 (CFO) on [001]-, [110]-, and [111]-oriented SrTiO3 (STO) substrates. This enables subsequent growth of [111]-oriented functional oxides, such as PbTiO3 (PTO), overcoming the constraint of the substrate. This strategy is quite general and applicable to lanthanum aluminate and yttria-stabilized zirconia substrates as well. X-ray Φ scans and atomic resolution aberration-corrected scanning transmission electron microscopy (AC-STEM) reveal detailed epitaxial relations in each of the cases, with four variants of [111]-CFO found on [001]-STO and two variants found on [110]-STO, formed to mitigate the large lattice misfit strain between the film and substrate. Our strategy thus provides a general pathway for orientation engineering of oxide epitaxy beyond substrate constraint.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined