Lactobacillus rhamnosus GG ameliorates triptolide-induced liver injury through modulation of the bile acid-FXR axis

Pharmacological Research(2024)

Cited 0|Views1
No score
Abstract
Triptolide (TP) is the principal bioactive compound of Tripterygium wilfordii with significant anti-tumor, anti-inflammatory and immunosuppressive activities. However, its severe hepatotoxicity greatly limits its clinical use. The underlying mechanism of TP-induced liver damage is still poorly understood. Here, we estimate the role of the gut microbiota in TP hepatotoxicity and investigate the bile acid metabolism mechanisms involved. The results of the antibiotic cocktail (ABX) and fecal microbiota transplantation (FMT) experiment demonstrate the involvement of intestinal flora in TP hepatotoxicity. Moreover, TP treatment significantly perturbed gut microbial composition and reduced the relative abundances of Lactobacillus rhamnosus GG (LGG). Supplementation with LGG reversed TP-induced hepatotoxicity by increasing bile salt hydrolase (BSH) activity and reducing the increased conjugated bile acids (BA). LGG supplementation upregulates hepatic FXR expression and inhibits NLRP3 inflammasome activation in TP-treated mice. In summary, this study found that gut microbiota is involved in TP hepatotoxicity. LGG supplementation protects mice against TP-induced liver damage. The underlying mechanism was associated with the gut microbiota-BA-FXR axis. Therefore, LGG holds the potential to prevent and treat TP hepatotoxicity in the clinic.
More
Translated text
Key words
Triptolide,Hepatotoxicity,Gut microbiota,Lactobacillus rhamnosus GG,Bile acid,Farnesoid X receptor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined