Hardware Realization of Neuromorphic Computing with a 4-Port Photonic Reservoir for Modulation Format Identification

Enes Şeker, Rijil Thomas,Guillermo von Hünefeld,Stephan Suckow, Mahdi Kaveh, Gregor Ronniger, Pooyan Safari, Isaac Sackey, David Stahl,Colja Schubert,Johannes Karl Fischer,Ronald Freund,Max C. Lemme

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The fields of machine learning and artificial intelligence drive researchers to explore energy-efficient, brain-inspired new hardware. Reservoir computing encompasses recurrent neural networks for sequential data processing and matches the performance of other recurrent networks with less training and lower costs. However, traditional software-based neural networks suffer from high energy consumption due to computational demands and massive data transfer needs. Photonic reservoir computing overcomes this challenge with energy-efficient neuromorphic photonic integrated circuits or NeuroPICs. Here, we introduce a reservoir NeuroPIC used for modulation format identification in C-band telecommunication network monitoring. It is built on a silicon-on-insulator platform with a 4-port reservoir architecture consisting of a set of physical nodes connected via delay lines. We comprehensively describe the NeuroPIC design and fabrication, experimentally demonstrate its performance, and compare it with simulations. The NeuroPIC incorporates non-linearity through a simple digital readout and achieves close to 100 accuracy in identifying several configurations of quadrature amplitude modulation formats transmitted over 20 km of optical fiber at 32 GBaud symbol rate. The NeuroPIC performance is robust against fabrication imperfections like waveguide propagation loss, phase randomization, etc. and delay line length variations. Furthermore, the experimental results exceeded numerical simulations, which we attribute to enhanced signal interference in the experimental NeuroPIC output. Our energy-efficient photonic approach has the potential for high-speed temporal data processing in a variety of applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要