SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.

Walter Filgueira de Azevedo, Rodrigo Quiroga, Marcos Ariel Villarreal, Nelson José Freitas da Silveira, Gabriela Bitencourt-Ferreira, Amauri Duarte da Silva, Martina Veit-Acosta,Patricia Rufino Oliveira, Marco Tutone, Nadezhda Biziukova, Vladimir Poroikov, Olga Tarasova, Stéphaine Baud

Journal of computational chemistry(2024)

引用 0|浏览0
暂无评分
摘要
Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要