谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Microbial Sulfur and Arsenic Oxidation Facilitate the Establishment of Biocrusts during Reclamation of Degraded Mine Tailings.

Environmental science & technology(2024)

引用 0|浏览3
暂无评分
摘要
Degraded tailings generated by the mining of metal ores are major environmental threats to the surrounding ecosystems. Tailing reclamation, however, is often impeded due to adverse environmental conditions, with depleted key nutrients (i.e., nitrogen (N) and phosphorus (P)) and elevated sulfur and metal(loid) concentrations. Formation of biocrusts may significantly accelerate nutrient accumulation and is therefore an essential stage for tailing reclamation. Although suggested to play an important role, the microbial community composition and key metabolisms in biocrusts remain largely unknown and are therefore investigated in the current study. The results suggested that sulfur and arsenic oxidation are potential energy sources utilized by members of predominant biocrust bacterial families, including Beijerinckiaceae, Burkholderiaceae, Hyphomicrobiaceae, and Rhizobiaceae. Accordingly, the S and As oxidation potentials are elevated in biocrusts compared to those in their adjacent tailings. Biocrust growth, as proxied by chlorophyll concentrations, is enhanced in treatments supplemented with S and As. The elevated biocrust growth might benefit from nutrient acquisition services (i.e., nitrogen fixation and phosphorus solubilization) fueled by microbial sulfur and arsenic oxidation. The current study suggests that sulfur- and arsenic-oxidizing microorganisms may play important ecological roles in promoting biocrust formation and facilitating tailing reclamation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要