Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ribosomal-processing cysteine protease homolog modulates Streptococcus mutans glucan production and interkingdom interactions.

Puthayalai Treerat, Camilla de Mattos, Molly Burnside, Hua Zhang, Yanting Zhu,Zhengzhong Zou,David Anderson,Hui Wu,Justin Merritt,Jens Kreth

Journal of bacteriology(2024)

Cited 0|Views7
No score
Abstract
Glucan-dependent biofilm formation is a crucial process in the establishment of Streptococcus mutans as a cariogenic oral microbe. The process of glucan formation has been investigated in great detail, with glycosyltransferases GtfB, GtfC, and GtfD shown to be indispensable for the synthesis of glucans from sucrose. Glucan production can be visualized during biofilm formation through fluorescent labeling, and its abundance, as well as the effect of glucans on general biofilm architecture, is a common phenotype to study S. mutans virulence regulation. Here, we describe an entirely new phenotype associated with glucan production, caused by a mutation in the open reading frame SMU_848, which is located in an operon encoding ribosome-associated proteins. This mutation led to the excess production and accumulation of glucan-containing droplets on the surface of biofilms formed on agar plates after prolonged incubation. While not characterized in S. mutans, SMU_848 shows homology to the phage-related ribosomal protease Prp, essential in cleaving off the N-terminal extension of ribosomal protein L27 for functional ribosome assembly in Staphylococcus aureus. We present a further characterization of SMU_848/Prp, demonstrating that the deletion of this gene leads to significant changes in S. mutans gtfBC expression. Surprisingly, it also profoundly impacts the interkingdom interaction between S. mutans and Candida albicans, a relevant dual-species interaction implicated in severe early childhood caries. The presented data support a potential broader role for SMU_848/Prp, possibly extending its functionality beyond the ribosomal network to influence important ecological processes. IMPORTANCE:Streptococcus mutans is an important member of the oral biofilm and is implicated in the initiation of caries. One of the main virulence mechanisms is the glucan-dependent formation of biofilms. We identified a new player in the regulation of glucan production, SMU_848, which is part of an operon that also encodes for ribosomal proteins L27 and L21. A mutation in SMU_848, which encodes a phage-related ribosomal protease Prp, leads to a significant accumulation of glucan-containing droplets on S. mutans biofilms, a previously unknown phenotype. Further investigations expanded our knowledge about the role of SMU_848 beyond its role in glucan production, including significant involvement in interkingdom interactions, thus potentially playing a global role in the virulence regulation of S. mutans.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined