Nanotransistor-based gas sensing with record-high sensitivity enabled by electron trapping effect in nanoparticles.

Nature communications(2024)

引用 0|浏览0
暂无评分
摘要
Highly sensitive, low-power, and chip-scale H2 gas sensors are of great interest to both academia and industry. Field-effect transistors (FETs) functionalized with Pd nanoparticles (PdNPs) have recently emerged as promising candidates for such H2 sensors. However, their sensitivity is limited by weak capacitive coupling between PdNPs and the FET channel. Herein we report a nanoscale FET gas sensor, where electrons can tunnel between the channel and PdNPs and thus equilibrate them. Gas reaction with PdNPs perturbs the equilibrium, and therefore triggers electron transfer between the channel and PdNPs via trapping or de-trapping with the PdNPs to form a new balance. This direct communication between the gas reaction and the channel enables the most efficient signal transduction. Record-high responses to 1-1000 ppm H2 at room temperature with detection limit in the low ppb regime and ultra-low power consumption of ~ 300 nW are demonstrated. The same mechanism could potentially be used for ultrasensitive detection of other gases. Our results present a supersensitive FET gas sensor based on electron trapping effect in nanoparticles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要