A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences.

Nature communications(2024)

Cited 0|Views6
No score
Abstract
IS1111 and IS110 insertion sequence (IS) family members encode an unusual DEDD transposase type and exhibit specific target site selection. The IS1111 group include identifiable subterminal inverted repeats (sTIR) not found in the IS110 type1. IS in both families include a noncoding region (NCR) of significant length and, as each individual IS or group of closely related IS selects a different site, we had previously proposed that an NCR-derived RNA was involved in target selection2. Here, we find that the NCR is usually downstream of the transposase gene in IS1111 family IS and upstream in the IS110 type. Four IS1111 and one IS110 family members that target different sequences are used to demonstrate that the NCR determines a short seeker RNA (seekRNA) that co-purified with the transposase. The seekRNA is essential for transposition of the IS or a cargo flanked by IS ends from and to the preferred target. Short sequences matching both top and bottom strands of the target are present in the seekRNA but their order in IS1111 and IS110 family IS is reversed. Reprogramming the seekRNA and donor flank to target a different site is demonstrated, indicating future biotechnological potential for these systems.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined