Biocompatible Perovskite Nanocrystals with Enhanced Stability for White Light-Emitting Diodes.

Rui Zhang, Ao Yan,Haiyun Liu, Zehua Lv,Mengqing Hong,Zhenxing Qin, Weijie Ren,Zhaoyi Jiang, Mingkai Li,Johnny C Ho,Pengfei Guo

ACS applied materials & interfaces(2024)

引用 0|浏览0
暂无评分
摘要
Recently emerged lead halide perovskite CsPbX3 (X = Cl, Br, and I) nanocrystals (PNCs) have attracted tremendous attention due to their excellent optical properties. However, the poor water stability, unsatisfactory luminescence efficiency, disappointing lead leakage, and toxicity have restricted their practical applications in photoelectronics and biomedical fields. Herein, a controllable encapsulated strategy is investigated to realize CsPbX3 PNCs/PVP @PMMA composites with superior luminescence properties and excellent biocompatibility. Additionally, the synthesized CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA structures exhibit green and red emissions with a maximal photoluminescence quantum yield (PLQY) of about 70.24% and 98.26%, respectively. These CsPbX3 PNCs/PVP@PMMA structures show high emission efficiency, excellent stability after water storage for 18 months, and low cytotoxicity at the PNC concentration at 500 μg mL-1. Moreover, white light-emitting diode (WLED) devices based on mixtures of CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA perovskite structures are investigated, which exhibit excellent warm-white light emissions at room temperature. A flexible manipulation method is used to fabricate the white light emitters based on these perovskite composites, providing a fantastic platform for fabricating solid-state white light sources and full-color displays.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要