Does Aromaticity Play a Role in Electronic and Structural Properties of YBn (n=2-14) Clusters?

Chemphyschem : a European journal of chemical physics and physical chemistry(2024)

Cited 0|Views1
No score
Abstract
Nanoclusters exhibit electronic, optical, and magnetic properties that differ significantly from those of extended and molecular systems with comparable stoichiometries. In this work, we examined the structural, energetic, and electronic characteristics of yttrium-doped boron clusters (YBn,  n =2-14) with robust wavefunction analysis tools. Special emphasis is placed on the elucidation of the potential aromatic character exhibited by the resultant molecules and how it can affect their chemical bonding and stability. Our results revealed that the YBn stability is governed by the maximization of the ionic Y-B interactions. This is evidenced from the lowest-energy conformations, which manifest as half-sandwich structures wherein the majority of boron atoms are bonded to yttrium. The stabilization of such chemical contacts comes at the expense of a notorious depletion of the Y local electron density, crystallizing in a considerable ionic character, close to Y2+ + Bn2-. Such a  charge transfer is coupled to the enhancement of the electron delocalization within the YBn lattice, resulting in quite remarkable local and global aromatic characters. Altogether, this study shows how the toolkit of real space chemical bonding descriptors can offer valuable insights into the structural and electronic properties,  of YBn clusters, contributing to a better understanding of their behavior.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined