The longevity-associated BPIFB4 gene guarantees vascular homeostasis and immune protection through platelets

Elena Ciaglia, Francesco Montella, Albino Carrizzo, Valentina Lopardo, Roberta Maria Esposito, Cristina Basile,Antonio Damato, Massimiliano De Lucia, Anna Maciag, Gaia Spinetti, Maria Serena Milella, Davide Maselli, Carmine Vecchione,Annibale Alessandro Puca

GeroScience(2024)

Cited 0|Views0
No score
Abstract
Beyond their activity in hemostasis and thrombosis, recent advances attribute platelets a pro-youthful role capable to attenuate immune senescence and age-related neuroinflammation. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models has proved strategic to cope with frailty conditions, aging-related events, e.g., cardiovascular ones, and immune dysfunction mainly through a favorable conditioning of the immune system. However, whether platelets participate in LAV-BPIFB4 therapeutic action is currently unknown. Herein, we discovered that platelets were instrumental in boosting the favorable health outcomes of the systemic AAV-LAV-BPIFB4 gene transfer in vivo, as the α-CD42b platelet depletion completely abolished the vascular protective action of LAV-BPIFB4 and suppressed its pro-resolutive CD206 + anti-/CD86 + pro-inflammatory Ly6C + monocyte skewing to LPS stimulation. Of note, this is associated with a huge drop in the protective levels of BPIFB4 in the plasma of AAV-LAV-BPIFB4-injected C57BL/6 mice, indicating that plasma circulating platelets may be a reservoir of the BPIFB4 protein. Indeed, we noticed that BPIFB4 was released by human platelets, a process that is amplified in LAV-allele carrier donors. Accordingly, lentivirus-mediated overexpression of human LAV-BPIFB4 isoform, but not WT-BPIFB4 isoform was able in leading differentiated megakaryocytes to release more platelet-like-particles enriched for BPIFB4. In addition, in vitro, the M2 macrophage polarization increased when releasate from platelets, and even more from LAV pre-stimulated once, was added in monocyte cell culture. Our data suggest that platelet release of BPIFB4 and of yet-to-be-determined unidentified factors mediates the therapeutic efficacy of LAV-BPIFB4 treatment.
More
Translated text
Key words
BPIFB4 gene,Vascular homeostasis,Platelets
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined