Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks

Xuan Zhang,Fang Wang,Zilin Chen

Analytica Chimica Acta(2024)

引用 0|浏览3
暂无评分
摘要
Background Chirality is a ubiquitous phenomenon in nature, but enantiomers exhibit different pharmacological activities and toxicological effects. Therefore, Chiral recognition plays a pivotal role in various fields such as life sciences, chemical synthesis, drug development, and materials science. The synthesis of novel chiral composites with well-defined loading capabilities and ordered structures holds significant potential for electrochemical chiral recognition applications. However, the design of selective and stable electrochemical chiral recognition materials remains a challenging task. Result In this work, we construct a simple and rapid electrochemical sensing platform for tryptophan (Trp) enantiomer recognition using cyclodextrin-modified microporous organic network as chiral recognition agent. CD-MON with chiral microenvironment was prepared by Sonogashira-Hagihara coupling reaction of the chiral molecule heptyl-6-iodo-6-deoxyβ-cyclodextrin and 1, 4-diacetylpentene. The adhesion of BSA makes CD-MON firmly fixed on the electrode surface, and as a chiral protein, it can improve the chiral recognition ability through synergistic effect. Chiral amino acids are in full contact with the chiral microenvironment during pore conduction of MON, and L-Trp is more stably bound to CD-MON/BSA due to steric hindrance, host-guest recognition and hydrogen bonding. Therefore, the electrochemical sensor can effectively identify tryptophan enantiomers (IL-Trp/ID-Trp = 2.02), and it exhibits a detection limit of 2.6 μM for L-Trp. UV-Vis spectroscopy confirmed the adsorption capacity of CD-MON towards tryptophan enantiomers in agreement with electrochemistry results. Significance The prepared chiral sensor has excellent stability, reproducibility (RSD=3.7%) and selectivity, realizes the quantitative detection of single isomer in tryptophan racemic and quantitative analysis in real samples with 94.0%-101.0% recovery. This work represents the first application of MON in chiral electrochemistry which expands the application scope of chiral sensors and holds great significance in separation science and electrochemical sensing.
更多
查看译文
关键词
Microporous Organic Network,Chiral recognition,Electrochemical sensor,Tryptophan enantiomers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要