Stabilized ε-Fe2C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis.

Fei Qian, Jiawei Bai, Yi Cai,Hui Yang, Xue-Min Cao,Xingchen Liu,Xing-Wu Liu,Yong Yang,Yong-Wang Li,Ding Ma,Xiao-Dong Wen

Nature communications(2024)

引用 0|浏览8
暂无评分
摘要
Accurately controlling the product selectivity in syngas conversion, especially increasing the olefin selectivity while minimizing C1 byproducts, remains a significant challenge. Epsilon Fe2C is deemed a promising candidate catalyst due to its inherently low CO2 selectivity, but its use is hindered by its poor high-temperature stability. Herein, we report the successful synthesis of highly stable ε-Fe2C through a N-induced strategy utilizing pyrolysis of Prussian blue analogs (PBAs). This catalyst, with precisely controlled Mn promoter, not only achieved an olefin selectivity of up to 70.2% but also minimized the selectivity of C1 byproducts to 19.0%, including 11.9% CO2 and 7.1% CH4. The superior performance of our ε-Fe2C-xMn catalysts, particularly in minimizing CO2 formation, is largely attributed to the interface of dispersed MnO cluster and ε-Fe2C, which crucially limits CO to CO2 conversion. Here, we enhance the carbon efficiency and economic viability of the olefin production process while maintaining high catalytic activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要