High-Performance NIR-II Fluorescent Type I/II Photosensitizer Enabling Augmented Mild Photothermal Therapy of Tumors by Disrupting Heat Shock Proteins.

Quanheng Jiang, Jingyu Li,Zhong Du, Mengyuan Li, Liying Chen, Xunwen Zhang, Xialian Tang, Yaowei Shen, Dalong Ma,Wen Li,Lin Li,Nuernisha Alifu,Qinglian Hu,Jie Liu

Advanced healthcare materials(2024)

引用 0|浏览7
暂无评分
摘要
NIR-II fluorescent photosensitizers as phototheranostic agents hold considerable promise in the application of mild photothermal therapy (MPTT) for tumors, as the reactive oxygen species generated during photodynamic therapy can effectively disrupt heat shock proteins. Nevertheless, the exclusive utilization of these photosensitizers to significantly augment the MPTT efficacy has rarely been substantiated, primarily due to their insufficient photodynamic performance. Herein, we present the utilization of high-performance NIR-II fluorescent type I/II photosensitizer (AS21:4) as a simple but effective nanoplatform derived from molecule AS2 to enhance the MPTT efficacy of tumors without any additional therapeutic components. By taking advantage of heavy atom effect, AS21:4 as a type I/II photosensitizer demonstrates superior efficacy in producing 1O2 (ΦΔ = 12.4%) and O2 •- among currently available NIR-II fluorescent photosensitizers with absorption exceeding 800 nm. In vitro and in vivo findings demonstrate that the 1O2 and O2 •- generated from AS21:4 induce a substantial reduction in the expression of HSP90, thereby improving the MPTT efficacy. The remarkable phototheranostic performance, substantial tumor accumulation, and prolonged tumor retention of AS21:4, establish it as a simple but superior phototheranostic agent for NIR-II fluorescence imaging-guided MPTT of tumors. This article is protected by copyright. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要