Arachidonic acid mobilization and peroxidation promote microglial dysfunction in Aβ pathology.

The Journal of neuroscience : the official journal of the Society for Neuroscience(2024)

引用 0|浏览3
暂无评分
摘要
Aberrant increase of arachidonic acid (ARA) has long been implicated in the pathology of Alzheimer's disease (AD), while the underlying causal mechanism remains unclear. In this study, we revealed a link between ARA mobilization and microglial dysfunction in Aβ pathology. Lipidomic analysis of primary microglia from AppNL-GF mice showed a marked increase in free ARA and lysophospholipids (LPLs) along with a decrease in ARA-containing phospholipids, suggesting increased ARA release from phospholipids (PLs). To manipulate ARA-containing PLs in microglia, we genetically deleted Lysophosphatidylcholine Acyltransferase 3 (Lpcat3), the main enzyme catalyzing the incorporation of ARA into PLs. Loss of microglial Lpcat3 reduced the levels of ARA-containing phospholipids, free ARA and LPLs, leading to a compensatory increase in monounsaturated fatty acid (MUFA)-containing PLs in both male and female App NL-GF mice. Notably, the reduction of ARA in microglia significantly ameliorated oxidative stress and inflammatory responses while enhancing the phagocytosis of Aβ plaques and promoting the compaction of Aβ deposits. Mechanistically, sc-RNA seq suggested that LPCAT3 deficiency facilitates phagocytosis by facilitating de novo lipid synthesis while protecting microglia from oxidative damage. Collectively, our study reveals a novel mechanistic link between ARA mobilization and microglial dysfunction in AD. Lowering brain ARA levels through pharmacological or dietary interventions may be a potential therapeutic strategy to slow down AD progression.Significance Statement This study revealed a novel mechanistic link between the increase of arachidonic acid and microglial dysfunction in Alzheimer's disease. We discovered that microglia in an AD mouse model show heightened free ARA, pointing to increased ARA release from phospholipids. By targeting Lysophosphatidylcholine Acyltransferase in microglia, we effectively reduced ARA levels, leading to decreased oxidative stress and inflammation, and enhanced clearance of Aβ plaques. This study suggests that lowering brain ARA levels could be a viable approach to slow AD progression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要