谷歌Chrome浏览器插件
订阅小程序
在清言上使用

[FeIIICl(TMPPH2)][FeIIICl4]2: A Stand-Alone Molecular Nanomedicine That Induces High Cytotoxicity by Ferroptosis

Molecules(2024)

引用 0|浏览6
暂无评分
摘要
Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098–3.97 μM (0.066–2.68 μg mL−1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.
更多
查看译文
关键词
single-molecular nanomedicine,porphyrin ligand,chemodynamic therapy,ferroptosis,breast cancer therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要