谷歌浏览器插件
订阅小程序
在清言上使用

Generalized Zeno effect and entanglement dynamics induced by fermion counting

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We study a one-dimensional lattice system of free fermions subjected to a generalized measurement process: the system exchanges particles with its environment, but each fermion leaving or entering the system is counted. In contrast to the freezing of dynamics due to frequent measurements of lattice-site occupation numbers, a high rate of fermion counts induces fast fluctuations in the state of the system. Still, through numerical simulations of quantum trajectories and an analytical approach based on replica Keldysh field theory, we find that instantaneous correlations and entanglement properties of free fermions subjected to fermion counting and local occupation measurements are strikingly similar. We explain this similarity through a generalized Zeno effect induced by fermion counting and a universal long-wavelength description in terms of an SU(R) nonlinear sigma model. Further, for both types of measurement processes, we present strong evidence against the existence of a critical phase with logarithmic entanglement and conformal invariance at finite measurement rates. Instead, we identify a well-defined and finite critical range of length scales on which signatures of conformal invariance are observable. While area-law entanglement is established beyond a scale that is exponentially large in the measurement rate, the upper boundary of the critical range is only algebraically large and thus numerically accessible.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要