Continued Evolution of H10N3 Influenza Virus with Adaptive Mutations Poses an Increased Threat to Mammals

Shiping Ding, Jiangtao Zhou, Junlong Xiong, Xiaowen Du, Wenzhuo Yang,Jinyu Huang, Yi Liu, Lihong Huang,Ming Liao,Jiahao Zhang,Wenbao Qi

Virologica Sinica(2024)

引用 0|浏览11
暂无评分
摘要
The H10 subtype of avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 strains (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these strains were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 strain (A/chicken/Jiangxi/102/2013), the H10N3 strains exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.
更多
查看译文
关键词
Avian influenza virus (AIV),H10N3,Evolution,Pathogenicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要