Vanadium Nitride /Poly(0-Methoxy Aniline)- Poly(3,4-Ethylene Dioxythiophene) interpenetrated into Nanocomposite for efficient photocatalytic degradation of methylene blue and Enhanced Electrochemical Sensing of Mebendazole

Munusamy Settu,Gnanamoorthy Govindhan, Bavani Thirugnanam,Narayanan Vengidusamy, Majed A. Alotaibi

Biosensors and Bioelectronics: X(2024)

Cited 0|Views3
No score
Abstract
Vanadium nitride-poly (0-methoxy aniline)- poly(3,4-ethylene dioxythiophene) (VN-POMA-PEDOT) hybrid was synthesized via ammonolysis and chemical oxidative polymerization technique using VN-POMA-PEDOT/GCE with electrocatalytic activity has two dimensional VN hierarchical porosity with POMA-PEDOT structure created VN-POMA-PEDOT modified GCE working electrode. Donor-acceptor behavior and double-layer growth enable enhanced electrochemical performance and catalytic activity of mebendazole (MBZ). This work investigated the electrochemical sensing conduct of a VN-POMA-PEDOT hybrid composite towards MBZ. The detection limit (DL) and quantification limit (QL) were determined to be 2.192 ×10-9 μM μA-1 and 5.245 ×10-9 M μA-1. Estimation of anti-interference ability, long-term stability, and reproducibility revealed that the prepared VN-POMA-PEDOT electrode is appropriate for the electrochemical sensing finding of MBZ in real analysis, such by way of anti-helminthic drug milk. The VN-POMA-PEDOT achieved 98.9% efficiency in the photocatalytic degradation of methylene blue (MB) within 50 min with degradation rate 8.3X10-3 min-1. The suppleness of this method was confirmed by the hybrid morphology VN-POMA-PEDOT, which shows an enormously superior and enhanced photocatalytic presentation of MB.
More
Translated text
Key words
Biosensors,Methylene blue,Photocatalytic degradation,visible light
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined