谷歌Chrome浏览器插件
订阅小程序
在清言上使用

A mechanical qubit

Yu Yang, Igor Kladaric,Maxwell Drimmer, Uwe von Luepke, Daan Lenterman, Joost Bus, Stefano Marti,Matteo Fadel,Yiwen Chu

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Strong nonlinear interactions between quantized excitations are an important resource for quantum technologies based on bosonic oscillator modes. However, most electromagnetic and mechanical nonlinearities arising from intrinsic material properties are far too weak compared to dissipation in the system to allow for nonlinear effects to be observed on the single-quantum level. To overcome this limitation, electromagnetic resonators in both the optical and microwave frequency regimes have been coupled to other strongly nonlinear quantum systems such as atoms and superconducting qubits, allowing for the demonstration of effects such as photon blockade and coherent quantum protocols using the Kerr effect. Here, we demonstrate the realization of the single-phonon nonlinear regime in a solid-state mechanical system. The single-phonon anharmonicity in our system exceeds the decoherence rate by a factor of 6.8, allowing us to use the lowest two energy levels of the resonator as a mechanical qubit, for which we show initialization, readout, and a complete set of direct single qubit gates. Our work adds another unique capability to a powerful quantum acoustics platform for quantum simulations, sensing, and information processing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要