A generic and robust quantum agent inspired by deep meta-reinforcement learning

Zibo Miao, Shihui Zhang,Yu Pan, Sibo Tao,Yu Chen

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Deep reinforcement learning (deep RL) has enabled human- or superhuman- performances in various applications. Recently, deep RL has also been adopted to improve the performance of quantum control. However, a large volume of data is typically required to train the neural network in deep RL, making it inefficient compared with the traditional optimal quantum control method. Here, we thus develop a new training algorithm inspired by the deep meta-reinforcement learning (deep meta-RL), which requires significantly less training data. The trained neural network is adaptive and robust. In addition, the algorithm proposed by us has been applied to design the Hadamard gate and show that for a wide range of parameters the infidelity of the obtained gate can be made of the order 0.0001. Our algorithm can also automatically adjust the number of pulses required to generate the target gate, which is different from the traditional optimal quantum control method which typically fixes the number of pulses a-priory. The results of this paper can pave the way towards constructing a universally robust quantum agent catering to the different demands in quantum technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要