Tunable dual-band composite metasurface absorber in the mid-infrared region based on LSPs-SPPs interaction

Shengyi Wang,Lei Wang,Hao Luo, Hua Ge,Xiang Li, Shi Pu,Bowen Jia

Physica E: Low-dimensional Systems and Nanostructures(2024)

引用 0|浏览3
暂无评分
摘要
Mid-infrared (MIR) region includes many important fingerprint signals about of particular chemical molecules and functional groups, which is an important band for compact optical sensing system. Controlling the localized surface plasmons (LSPs) and surface plasmon polariton (SPP) modes is an effective approach to achieving perfect absorption in plasmonic metasurfaces. In this work, we systematically investigate the interaction between LSP and SPP within a composite plasmonic metasurface absorber, as well as the impact of this interaction on its absorption characteristics. The absorber achieves absorptivity 99.2% at 2.39 μm and 98.8% at 3.61 μm. The detailed absorption mechanism and tunability of the absorber are discussed associated with a physical model based on quantum electron dynamics (QED) theory. Our analysis also explores the effect of incident angle, identifying a Rabi splitting at 40° and 3.61 μm due to the interaction between cavity modes and LSPs, while the absorption peak at 2.39 μm experiences a redshift with an increasing angle. These peaks show minimal dependence on the polarization angles of incident light. Furthermore, we investigate the impact of the SiO2 spacer’s refractive index using an admittance model, observing a redshift in the absorption peaks with an increase in refractive index. Our findings not only introduce a metasurface absorber for the MIR spectrum, applicable in sensing and detection, but also establish a foundation for further research.
更多
查看译文
关键词
Mid-infrared,Absorber,Plasmon,Metasurface,Quantum electrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要