A comparative study of Newtonian and non-Newtonian blood flow through Bi-Leaflet Mechanical Heart Valve

Nandan Sarkar, Siddharth D. Sharma,Suman Chakraborty,Somnath Roy

Computers & Fluids(2024)

引用 0|浏览0
暂无评分
摘要
The present study examines flow through Bi-Leaflet Mechanical Heart Valves (BMHV) at physiological conditions considering both Newtonian and non-Newtonian fluid models for blood rheology. It is well known that the non-Newtonian effects of blood are pronounced in small diameter arteries. Most of the earlier works on Mechanical Heart Valves (MHV) have considered blood as a Newtonian fluid as the flow involves large-diameter artery such as the aorta. In this work, we have reported the predicted parameters, such as leaflet kinematics, vortex structures, wall shear stress, and blood damage index for both blood models. It is found that the leaflet attributes smaller asynchronous motion in the case of non-Newtonian Carreau fluid model with slightly reduced angular velocity compared to the Newtonian assumption. Predictions on the blood damage index suggest a 21% higher damage while using non-Newtonian model than Newtonian model, which may be attributed to higher levels of mechanical stress within the fluid. However, vortex structures, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) are found to be similar in predictions using both the fluid models. We have used an in-house sharp interface immersed boundary method with fluid structure interaction to simulate the coupled action of moving valves and pulsatile blood flow. Our findings suggest that the general consensus of using Newtonian model in large arteries may not be appropriate for prediction of leaflet kinematics and blood damage index in Mechanical heart valves.
更多
查看译文
关键词
Non-Newtonian model,Bi-Leaflet Mechanical Heart Valve,Blood damage,Fluid–structure interaction,Immersed boundary method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要