Molecular findings in patients for whole exome sequencing and mitochondrial genome assessment.

Gege Sun, Wei Huang, Li Wang, Jinlin Wu,Ganye Zhao,Huanan Ren,Lina Liu,Xiangdong Kong

Clinica chimica acta; international journal of clinical chemistry(2024)

引用 0|浏览1
暂无评分
摘要
OBJECTIVE:Whole exome sequencing (WES) is becoming more widely used as a diagnostic tool in the field of medicine. In this article, we reported the diagnostic yield of WES and mitochondrial genome assessment in 2226 consecutive cases in a single clinical laboratory. MATERIALS AND METHODS:We retrospectively analyzed consecutive WES reports from 2226 patients with various genetic disorders. WES-process was focused exclusively on the probands and aimed at a higher diagnostic capacity. We determined the diagnostic rate of WES overall and by phenotypic category, mode of inheritance, mitochondrial genome variant, and copy number variants (CNVs). RESULTS:Among the 2226 patients who had diagnostic WES proband-only, the overall diagnostic yield of WES was 34.59% (770/2226). The highest diagnostic yield was observed in autosomal dominant disorders, at 45.58% (351/770), followed by autosomal recessive at 31.95%(246/770), X-linked disorder at 9.61%(74/770), and mitochondrial diseases at a notably lower 0.65%(5/770). The 12.21% (94/770) diagnoses were based on a total of 94 copy number variants reported from WES data. CNVs in children accounted for 67.02% of the total CNVs. While majority of the molecular diagnoses were related to nuclear genes, the inclusion of mitochondrial genome sequencing in the WES test contributed to five diagnoses. all mitochondrial diseases were identified in adults. CONCLUSIONS:The proband-only WES provided a definitive molecular diagnosis for 34.59% of a large cohort of patients while analysis of WES simultaneously analyzed the SNVs, exons, mitochondrial genome, and CNVs, thereby improving the diagnostic yield significantly compared to the single-detection WES method; and facilitating the identification of novel candidate genes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要